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Abstract

Numerous theoretical and experimental studies have investigated antagonistic co-evo-

lution between parasites and their hosts. Although experimental tests of theory from a

range of biological systems are largely concordant regarding the influence of several

driving processes, we know little as to how mechanisms acting at the smallest scales

(individual molecular and phenotypic changes) may result in the emergence of struc-

tures at larger scales, such as co-evolutionary dynamics and local adaptation. We capi-

talized on methods commonly employed in community ecology to quantify how the

structure of community interaction matrices, so-called bipartite networks, reflected

observed co-evolutionary dynamics, and how phages from these communities may or

may not have adapted locally to their bacterial hosts. We found a consistent nested

network structure for two phage types, one previously demonstrated to exhibit arms

race co-evolutionary dynamics and the other fluctuating co-evolutionary dynamics.

Both phages increased their host ranges through evolutionary time, but we found no

evidence for a trade-off with impact on bacteria. Finally, only bacteria from the arms

race phage showed local adaptation, and we provide preliminary evidence that these

bacteria underwent (sometimes different) molecular changes in the wzy gene associ-

ated with the LPS receptor, while bacteria co-evolving with the fluctuating selection

phage did not show local adaptation and had partial deletions of the pilF gene associ-

ated with type IV pili. We conclude that the structure of phage–bacteria interaction

networks is not necessarily specific to co-evolutionary dynamics, and discuss hypothe-

ses for why only one of the two phages was, nevertheless, locally adapted.
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Introduction

Dynamic populations of enemies, such as parasites or

predators, are thought to impose constantly changing

selection pressures on their victims (hosts or prey). In

combination with environmental variation, these inter-

actions drive genetic population diversification and

adaptive responses. A large body of theoretical work on

the most studied form of antagonistic co-evolution,

between hosts and their parasites, has provided a con-

ceptual framework of how parasite exploitation and

host resistance traits interact and change over evolu-

tionary time, and how co-evolutionary trajectories

depend on underlying interaction genetics, trade-offs

between interaction traits and life history traits, repro-

ductive systems, migration in patchy habitats or

Correspondence: Michael E. Hochberg, ISEM, CNRS-Universit�e

de Montpellier, CC065, Place E. Bataillon, Montpellier 34095,

France, Fax: +33 (0)4 67 14 36 22; E-mail: mhochber@univ-

montp2.fr
1Equal contribution.

© 2017 John Wiley & Sons Ltd

Molecular Ecology (2017) doi: 10.1111/mec.14008

http://orcid.org/0000-0002-7154-0456
http://orcid.org/0000-0002-7154-0456
http://orcid.org/0000-0002-7154-0456
http://orcid.org/0000-0002-6774-5213
http://orcid.org/0000-0002-6774-5213
http://orcid.org/0000-0002-6774-5213


environmental heterogeneity (e.g. Bell et al. 1987; Hoch-

berg & Holt 1995; Gandon et al. 1996; Hochberg & Baa-

len 1998; Thompson 1999; Gomulkiewicz et al. 2000;

Agrawal & Lively 2002; Poisot et al. 2011a; Ashby et al.

2014). Many of the predictions emerging from this the-

ory have been tested in the laboratory (e.g. Forde et al.

2004; Fischer & Schmid-Hempel 2005; Lopez-Pascua &

Buckling 2008; Hall et al. 2011b; Koskella et al. 2011;

Friman & Buckling 2013; Harrison et al. 2013; Koskella

& Brockhurst 2014; G�omez et al. 2015) and field

(Dybdahl & Lively 1998; Kaltz et al. 1999; Decaestecker

et al. 2007; Thrall et al. 2012; Jousimo et al. 2014).

Nonetheless, we still know surprisingly little about the

genetics of the co-evolutionary process.

In order to understand how co-evolutionary dynam-

ics are generated and how this gives rise to patterns in

adaptation across populations, it is necessary to charac-

terize interactions between specific parasite exploitation

genes and host defence genes (Gandon et al. 2008;

Thompson 2009). Indeed, the importance of host–para-
site interaction genetics has long been recognized, start-

ing with classic concepts in plant pathology (Flor 1956).

Interaction genetics define ‘who attacks/resists whom’

in a population, thereby determining the range and

specificity of genotypes involved in the interaction.

There are two broad families of genetic architecture

models characterizing the structure of host–parasite
bipartite interaction networks. Gene-for-gene (GFG)

interactions hypothesize that the parasite has an infec-

tion locus that overcomes the value of the correspond-

ing host resistance locus. In contrast, matching allele

models (MA) assume that infection requires an exact

qualitative match between the host and parasite types.

Most evidence linking putative genetic interactions to

co-evolutionary dynamics comes from experimental

evolution of bacteria and phage (e.g. Hall et al. 2011b;

Tack et al. 2012; Brockhurst & Koskella 2013; Betts et al.

2014) and a small number of field studies (Dybdahl &

Lively 1998; Enjalbert et al. 2005; Mboup et al. 2012;

Thrall et al. 2012).

Interaction genetics have been studied in various nat-

ural systems by establishing genotype-by-genotype

(GxG) interaction matrices in controlled infection exper-

iments (e.g. Thompson & Burdon 1992; Carius et al.

2001; Kaltz & Shykoff 2002; Poullain et al. 2008). How-

ever, apart from detecting statistically significant genetic

interactions, results have generally remained inconclu-

sive regarding the structure of the interaction matrix

and how these interactions affect the co-evolutionary

process (Frank 1994, 1996; Parker 1994). Recently, sev-

eral studies have employed tools from community ecol-

ogy to analyse GxG interactions as bipartite networks

(e.g. Poisot et al. 2011b; Beckett & Williams 2013; Weitz

et al. 2013). Bipartite networks between antagonists can

be classified as random, nested, modular or one-to-one

(e.g. Newman 2006; Liu & Murata 2009; Ulrich 2009;

Weitz et al. 2013). In this terminology, GFG interactions

can generate networks with all-infectious (or all-resis-

tant) generalist types leading to a nested structure. In

contrast, MA should produce networks of high speci-

ficity composed of infection and resistance specialists

and a more modular structure (Weitz et al. 2013;

Fig. S1, Supporting information). Furthermore, multiple

genes may be involved in a co-evolutionary interaction

(Frank 1996; Agrawal & Lively 2003; Thrall et al. 2015),

may act simultaneously or sequentially (two-step infec-

tion) and each involve either MA or GFG interactions,

possibly associated with different fitness costs (Agrawal

& Lively 2003). As a result, the ‘realized’ network struc-

ture may be neither perfectly modular nor perfectly

nested. The involvement of multiple genes may also

produce a multiscale network structure; for example, it

has been suggested that larger taxonomic groups have

MA relationships, and within these groups, interactions

are closer to GFG (Beckett & Williams 2013; Flores et al.

2013). This gives rise to networks in which modules

show an internally nested structure (Weitz et al. 2013).

Despite a growing understanding of how interaction

genetics produces network structure and co-evolution-

ary dynamics, we currently lack a formal framework

for how the latter two are linked. Such associations not

only reflect the current and recent past states of the co-

evolutionary process, but also how network structure is

predictive of future co-evolutionary dynamics. For

instance, work on bacteria–phage systems indicates that

molecular evolution at interaction loci underlies con-

temporaneous co-evolutionary change (Paterson et al.

2010; Scanlan et al. 2011, 2015). Indeed, theory predicts

associations between interaction genetics and the type

of co-evolutionary dynamics (e.g. Thompson & Burdon

1992; Frank 1996; Agrawal & Lively 2003). Namely,

under GFG, we can expect cumulative selective sweeps

of host and parasite genes (so-called arms race dynam-

ics; hereafter ARD), with ever-increasing attack and

resistance ranges. In contrast, MA interaction genetics

should allow frequency-dependent cycling of host and

parasite genes over time (Red Queen or, more gener-

ally, fluctuating selection dynamics; hereafter FSD).

However, certain GFG-type systems may show FSD

(e.g. Sasaki 2000), suggesting that the basic structure of

interaction matrices needs to be characterized in

sufficient detail in order to explain co-evolutionary

dynamics.

Because species almost invariably interact in spatially

structured environments, understanding how genetic

interactions produce and are, in turn, affected by co-

evolutionary mosaics is important in understanding

diversity and adaptation (Thompson 2005). Local
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adaptation in particular is central to determining how

species evolve to one another. A geographic pattern of

local adaptation is a direct consequence of one player

adapting to the locally most common genotype(s) of its

opponent. This is particularly true if the acquisition of

the necessary genes trades off with the performance on

foreign (allopatric) antagonists. One general, straightfor-

ward prediction is that the player with the higher evo-

lutionary potential should be locally adapted to its

opponent, due to a higher capacity to sample and adapt

to local genotypes before they counteradapt. Evolution-

ary capacity is expected to increase with higher muta-

tion rate or increased migration rate, shorter generation

time, greater trait change or lower adaptive trait costs

(Gandon 2002; Nuismer & Gandon 2008; Gandon &

Nuismer 2009). Despite both laboratory and field assess-

ments of local adaptation and driving ecological factors

(reviews and meta-analyses in Kaltz & Shykoff 1998;

Greischar & Koskella 2007; Hoeksema & Forde 2008;

Brockhurst & Koskella 2013; Koskella & Brockhurst

2014), in particular in systems of bacteria and their

phage predators (Forde et al. 2004; Morgan et al. 2005;

Morgan & Buckling 2006; Koskella et al. 2011), only

scant investigation has actually established a molecular

basis for trait interactions and how they may scale up

to population-level patterns (Perry et al. 2015).

To the best of our knowledge, no study has

attempted to establish an integrated approach, combin-

ing a molecular basis for trait interactions with the

structure of these interactions in bipartite networks, and

link these to the larger-scale patterns of co-evolutionary

dynamics and local adaptation. We take initial steps

towards this challenge by investigating network struc-

ture, its change and local adaptation in co-evolving

populations of the Gram-negative bacterium Pseu-

domonas aeruginosa (PAO1) and two lytic phage isolates.

Previously, Betts et al. (2014) used time-shift assays to

show that the phage 14-1 (Myoviridae) exhibited arms

race type co-evolutionary dynamics, whereas LUZ19

(Podoviridae) showed fluctuating selection dynamics

with the same P. aeruginosa strain over the course of 10

serial transfers (approximately 60 bacterial generations).

We qualitatively assessed the prediction that parasite

adaptation in arms race systems involves increases in

infectivity ranges and should therefore result in more

nested local network structures. In contrast, we hypoth-

esize that fluctuating selection dynamics should lead to

a less nested network and possibly even a modular net-

work structure, the latter characterized by the presence

of specialist phage and bacteria with more restricted

attack and defence ranges. We further evaluated the

prediction that, all else being equal, increased host

range within populations should be positively corre-

lated with levels of parasite local adaptation between

populations. A final prediction concerns how

co-evolutionary dynamics are expected to associate with

local adaptation. Several studies have indicated that

endogenous or exogenous processes that create co-evo-

lutionary differences or asynchrony between popula-

tions (e.g. differential migration, drift, isolation by

distance, multiple interaction genes, different habitat

characteristics) potentially foster patterns in local adap-

tation (e.g. Lively 1999; Hochberg & Møller 2001;

Gandon 2002; Nuismer 2006; Gandon & Nuismer 2009).

Gandon & Nuismer (2009) compared and contrasted

matching allele models with gene-for-gene models, the

former tending to generate FSD more than the latter.

They found a tendency for matching allele models to

produce more local adaptation than gene-for-gene mod-

els, but this observation depended importantly on

underlying model assumptions and specific values

assigned to parameters.

To track evolutionary change in network structure,

we isolated single phages and single bacteria from each

population at three time points during the long-term

experiment of Betts et al. (2014). We then performed

cross-infection assays to quantify their resistance and

infection ranges. From these data, we constructed

phage–bacteria infection networks. We compared the

structure (nestedness and modularity) of each of these

networks, their mean impact and host range over time

and between the two phages. To measure local adapta-

tion, we performed cross-infection assays between bac-

teria and phage from different populations. Finally, we

sequenced bacterial receptor genes for evidence of

molecular evolution underlying the observed local dif-

ferentiation, namely the evolution of restricted vulnera-

bility and associated network structure.

Methods

Culture media and conditions

Unless otherwise stated, all experiments were con-

ducted in King’s B (KB) culture medium (King et al.

1954). Bacterial cultures were introduced into 30-mL

plastic Falcon tubes (microcosms) containing 5 mL of

KB, incubated at 37 °C and 200 rpm orbital agitation.

For pairwise infection assays, we used Thermo Scien-

tificTM NuncTM MicroWellTM 96-Well Microplates, incu-

bated at 37 °C without agitation.

Isolation of bacterial and phage clones

We employed previously frozen samples (replicates

stored at �80 °C in 25% glycerol) corresponding to the

beginning, the middle and the end of the experiment

(transfers 1, 5 and 9; hereafter T1, T5 and T9) from
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bacterial populations co-evolving with each of two dif-

ferent phage lines (14-1 and LUZ19) from the study of

Betts et al. (2014). The study of Betts et al. (2014)

employed 20 arbitrarily selected bacterial isolates from

multiple time points and confronted each with a sample

of the sympatric phage population (which would have

potentially contained numerous clones). The clones

employed in the present study were arbitrarily sampled

from these same populations and thus are unlikely to

be 100% identical to those isolated by Betts et al. (2014).

Samples were incubated overnight in 5 mL KB at

37 °C in an orbital agitator at 200 rpm (intermittent agi-

tation, 1 min every 30 min). The overnight-incubated

samples were then centrifuged at 13 000 g for 5 min to

separate bacteria and phage; the supernatant was stored

at 4 °C as the whole phage population, while the pel-

leted bacteria was resuspended and streaked on to KB

agar plates and incubated again overnight. Twelve bac-

terial colonies were then chosen arbitrarily from the

incubated plates and used to initiate 12 separate micro-

cosms. After overnight incubation of these microcosms,

a sample from each was stored at �80 °C in 25% glyc-

erol for subsequent infection assays, while the remain-

ing culture was used for the second phase of phage

amplification. In total, we isolated 18 groups of 12 bac-

terial clones (2 phages 9 3 replicate populations 9 3

time points).

Figure S2 (Supporting information) presents an over-

view of the isolation method. In order to limit the net-

work to phage clones that could interact with at least one

of the 12 bacterial clones isolated from the same popula-

tion, each phage was amplified on a master population of

the 12 isolated sympatric bacterial clones (as prepared

above) with each contributing bacterial clone introduced

at an equal volume (8.3 lL) and an optical density (OD)

of 0.0083 at 600 nm (total OD of 0.1). The mix was then

incubated for 6 h at 37 °C, whereupon 10 lL of the phage

extracted from the stored evolution experiment was

added, and the resulting microcosm was incubated over-

night (18 h at 37 °C with 200 rpm intermittent orbital

agitation). The amplified phages were then isolated from

the mix by centrifuging at 13 000 g for 5 min, removing

the pellet and adding 10% v/v of chloroform to kill the

remaining bacteria. The sample was then serially diluted

to the point where phage plaques (PFUs) could be

counted; 10 lL droplets of the resulting dilutions were

administered on a lawn of the ancestor bacteria on soft-

top KB agar to isolate single PFUs; 12 phage plaques

from each plate were then arbitrarily chosen and ampli-

fied separately on the ancestor bacteria to produce 12 sin-

gle phage clones from each original population. Each

phage clone was then titrated so that an equal density

could be administered in the infection assays

(500 pfu/mL).

Pairwise infection protocol

We tested the impact of each phage isolate by introduc-

ing 10 lL of the phage sample into 96-well plates, each

well containing 190 lL of sympatric bacteria, previously

corrected to an OD of 0.1 at 600 nm (minimum readable

level), using a BMG ClariostarTM. Due to large sample

numbers and time constraints, the plates were incu-

bated for a restricted time window of 6 h (37 °C with-

out agitation) and then their ODs were measured.

Network analyses

For network indices, we used only significant interac-

tion between single bacterial and phage isolates, as

measured by impact (see below for methodology).

However, the network analysis only used whether an

impact occurred and not its strength. We focused on

two network indices, nestedness and modularity (see

Fig. S1, Supporting information), which were estimated

using R 3.3.2 (packages bipartite, vegan, plyr and ggplot2;

R Core Team 2015). We used the overlap and decreas-

ing fill (NODF) index to estimate the nestedness of our

networks (Almeida-Neto et al. 2008; Ulrich 2009). A

NODF value of 1 corresponds to a maximally nested

network, while a value of 0 indicates that the matrix is

empty. We used the computemodules routine from the R

bipartite package to measure modularity (Dormann

et al. 2008), which makes use of Newman’s modularity

measure (Newman 2004). Modularity ranges from 0 to

1 on adequately sized networks, with lower values rep-

resenting lower modularity and 1 being maximally

modular.

To test whether nestedness and modularity estimates

for a given network were significantly different from

random, the values were compared to a null model that

kept the same number of links as the original matrices,

but randomly reshuffled the links between the host and

the phage isolates. This model was used to construct

one hundred random matrices for each of our eighteen

matrices (a total of 1800 matrices). We then compared

the values of nestedness and modularity for each matrix

to the mean and variance of nestedness and modularity

for its random counterparts. The difference was consid-

ered significant if the actual value occurred outside the

95% central values of the random matrices.

Furthermore, as expected, modularity was negatively

correlated with the number of interactions per network

(r = �0.82, n = 18, P < 0.0001, across all networks), and

nestedness positively correlated (r = 0.57, n = 18,

P = 0.0129). Therefore, to make networks with different

numbers of interactions comparable, we regressed mod-

ularity and nestedness on the number of interactions

per network and extracted the residuals from all

© 2017 John Wiley & Sons Ltd
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regressions (including each of the 100 randomly redis-

tributed networks). These residual estimates allow com-

parisons of different networks, once the differences in

the number of positive interactions have been taken into

account.

Estimating mean phage impact and host range

The impact of each phage isolate j on each bacterial iso-

late i was measured assuming that changes in optical

density sufficiently correlated with phage fitness Mi,j

(Lenski & Levin 1985; Poisot et al. 2013) such that

Mi;j ¼ 1� lnðODi;j;6=ODi;j;0Þ= lnðODi;6=ODi;0Þ; ð1Þ

where ODi,j,6 (ODi,6) refers to the optical density of bac-

teria i in the presence (absence) of phage j after 6 h.

To determine whether a phage had a significant

interaction with its host (i.e. Mi,j is significantly larger

than 0), the difference in the mean optical density in

the presence (ODi,j,6 � ODi,j,0) and absence (ODi,6 �
ODi,0) of the phage was statistically compared using

Dunnett’s test. A statistically significant reduction in

optical density was considered to be evidence for the

phage having an interaction with the (host) bacterium.

The host range of a given phage Rj is the number of

bacterial isolates on which the phage had a significant

impact. The mean impact of a given phage Ij is the

sum of its significant impacts on all its hosts divided

by its range Ij = Mj/Rj.

We used linear mixed models to investigate variation

in residual nestedness, residual modularity, phage host

range and phage impact. Statistical models contained

phage type (14-1, LUZ19) and replicate population

(nested within phage type) as explanatory factors, and

time point as a covariate (transfers 1, 5 and 9). Initial

full models (including interactions with time point)

were reduced using backward model simplification

(where nonsignificant terms are sequentially removed

from full model, starting with highest-order interac-

tions). Data sets for nestedness and modularity con-

tained one data point per network (n = 18); in the same

way, values of host range and impact were averaged

over the 12 phages per network prior to analysis. For

each network, we further analysed genetic correlations

between host range and phage impact (averaged over

the different bacterial clones), using the values obtained

for the 12 phages in each network (i.e. n = 12 for each

correlation).

Local adaptation

For a local adaptation assay, we combined the 12 single

isolates of phages for each population into a single mix.

The same procedure was applied to bacteria from each

population. Each population of bacteria was grown with-

out phage in 5 mL of KB for 6 h with agitation, after

which the OD was corrected to the lowest common

denominator of 0.4 (at 600 nm) with three replicates for

each interaction with a given phage network population.

Each bacterial network population mix was then exposed

under the same experimental conditions to each of the

network phage population mixes (all possible combina-

tions among three replicate networks for each phage type

at T9: 2 phage types 9 3 bacterial populations 9 3 phage

populations 9 3 replicates = 54 replicates). The OD after

18 h was measured and compared against the (control)

line without any phages. Phage impact was calculated

using equation 1; in contrast to the network analyses,

nonsignificant interactions were included, as they may

indicate maladaptation.

Signals of local adaptation were investigated sepa-

rately for the two phages by constructing a statistical

model with phage impact as the response variable and

bacterial population and phage population as explana-

tory factors. The variation explained by the bacte-

ria 9 phage population interaction was then

decomposed to test for a difference between sympatric

and allopatric combinations (see Kaltz et al. 1999). To

assess the relationships between local adaptation and

our different network parameters, we calculated the

mean difference between sympatric and allopatric

phage impact for each of the six replicate populations

and tested for correlations with estimates of residual

nestedness, residual modularity, total host range and

phage impact, as measured for T9.

Genetic analysis

Recent work (Betts et al. 2016) identified bacterial genes

in which mutations can confer resistance to the two

phages used in this study, wzy (involved in LPS biosyn-

thesis) for phage 14-1 and pilF (involved in type IV pili

formation) for phage LUZ19. We examined the

sequence of these genes in their respective treatments at

T9. For each of the nine replicate lines, three representa-

tive bacterial clones were chosen, the most resistant, the

closest to the mid resistant and the least resistant, as

measured by the mean phage impact on these clones in

their corresponding network tests (18 bacterial clones in

total). Genomic DNA from each bacterial clone was

obtained by choosing a single bacterial colony and then

incubating it at 95 °C for 30 min in molecular-grade

water. Regions for sequencing were amplified by PCR

(Table S1, Supporting information). PCR samples were

sequenced by Eurofin on ABI 3730XL sequencers. ACT

Artemis was used to compare evolved strains to the

ancestor.

© 2017 John Wiley & Sons Ltd
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Results

Nestedness and modularity

We found a high number of unique interactions within

each network (a mean of 84% and 86% for 14-1 and

LUZ19, respectively; Table S2, Supporting information),

suggesting that the majority of the isolates differed

genetically at interaction loci. Overall, the majority of

the phage–bacteria networks displayed a nested pattern

(mean = 0.71 � 0.03 SE, n = 18) and had low values of

modularity (mean = 0.18 � 0.02 SE, n = 18). Figure 1

shows the full-sorted networks of bacterial populations

co-evolving with phages 14-1 and LUZ19, respectively

(see Fig. S3, Supporting information for the binary rep-

resentation used in our analyses). In comparison with

randomly simulated networks (with the same number

of positive interactions), 14 of the total 18 observed net-

works had significantly higher nestedness levels than

expected by chance (outside the bar of 95% percentile

range in Fig. 2), and 16 networks were significantly less

modular than random networks (Fig. 2). Overall, modu-

larity and nestedness were negatively correlated (all

populations and time points combined: r = �0.70,

n = 18, P < 0.0013).

We had expected more nested networks to emerge

for populations co-evolving with the ARD phage (14-1),

and more modular networks for populations co-evol-

ving with the FSD phage (LUZ19). However, there was

little evidence for such divergent trajectories. Neither

residual nestedness nor residual modularity showed

significant overall trends through time (F1,11 > 0.2, n.s.;

Fig. 2). There also was no obvious signal of network

identity: indices did not significantly differ between the

two phages nor among individual replicate populations

(all P > 0.18), and their interactions with time were also

nonsignificant (all P > 0.5).

Host range and phage impact

Following the predictions above for network trajecto-

ries, we also expected the two phages to differ in their

host range evolution. We found variable trajectories in

changes in host range among individual replicate popu-

lations (Fig. 3), but no clear overall difference between

14-1 and LUZ19 phage populations. Thus, over time,

host range increased strongly in some populations, but

remained low or even decreased in others (replicate

population 9 time interaction: F4,6 = 5.32, P = 0.0355;

phage 9 time interaction: F1,6 = 0.21, P > 0.6). Over all

T1 14 1 1 T1 14 1 2 T1 14 1 3

T5 14 1 1 T5 14 1 2 T5 14 1 3

T9 14 1 1 T9 14 1 2 T9 14 1 3

T1 LU 1 1 T1 LU 1 2 T1 LU 1 3

T5 LU 1 1 T5 LU 1 2 T5 LU 1 3

T9 LU 1 1 T9 LU 1 2 T9 LU 1 3

(a) (b)

Fig. 1 Networks are nested for both phage types. Networks produced from 12 clones of (a) phage 14-1 and 12 clones of (b) LUZ19,

interacting with each of 12 clones of sympatric bacteria from each sampled microcosm. 12 by 12 networks (rows in each network rep-

resent bacteria and columns are phages) are evaluated for phage impact at each of three time points (top row = transfer 1; middle

row = transfer 5; bottom row = transfer 9), and for three replicates (columns) for each phage type. Each square within each network

shows a confrontation between a bacterial clone and a phage clone from a given microcosm. Darker shades of each square indicate a

higher impact of phage on the target bacterial clone’s OD. Each shade was determined by the maximal impact value for each net-

work with black being set to the maximum and white being 0.
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time points, host range tended to be larger for the 14-1

phage than for LUZ19 phage, but this trend was not

statistically significant (F1,4 = 5.60, P = 0.0772).

Phage impact was measured to test for possible

associations (costs) with host range. We found that

impact did not significantly vary with phage type

(main effect and interaction with time, both P > 0.2).

We further detected a general decreasing, but non-

significant, trend through time (F1,11 = 3.47,

P = 0.0894; Fig. 3). Thus, at least for some
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populations, temporal increases in host range were

associated with decreases in the capacity to reduce

host density, which suggests a trade-off between the

two quantities. However, analysis of the genetic corre-

lations within populations revealed little evidence for

such a trade-off: of the 18 correlations based on the

12 phage isolates from each population and time

point, 14 were positive (six with P < 0.01) and only

four negative (Fig. S4; Table S3, Supporting informa-

tion). Generally, the genetic correlations remained pos-

itive or became positive over time (T1, T5 and T9;

Fig. S5), indicating that phage variants with larger

host range also had larger impacts on host density.

Only one LUZ19 replicate population showed an

increasing negative correlation, consistent with a

trade-off between host range and impact. We obtained

very similar results when using summed impact over

all hosts (not shown), rather than mean impact, again

suggesting that increased range generally does not

come at a cost.

Local adaptation

We further tested whether network structure might

scale up to the between-population-level patterns of

local adaptation. We found a consistent pattern of

local adaptation of phage 14-1 to its hosts

(F1,3 = 16.54, P = 0.0268), as indicated by stronger

phage impact in sympatric bacteria–phage combina-

tions than in allopatric combinations. This pattern

holds for all three populations tested (Fig. 4). In con-

trast, no clear general pattern of local adaptation was

detected for phage LUZ19 (F1,3 = 8.25, P > 0.06). Com-

bining data over all six tested replicate populations,

we found no indication of a quantitative relationship

between the degree of local parasite adaptation and

the above network parameters (residual nestedness,

residual modularity, host range, phage impact: all

r ≤ 0.2, n = 6, P > 0.7; Fig. S6, Supporting

information).

Molecular evolution

The sequence analysis showed several mutations for the

wzy gene from bacteria co-evolving with the 14-1 phage,

whereas the pilF gene from bacteria co-evolving with

the LUZ19 phage showed limited changes, which were

mostly large-scale deletions of the upstream region of

the gene, or truncation within the gene (Table 1). The

mutations observed in the wzy gene were typically

around the same positions, notably the 290-bp region �
9 for four mutations, the 530-bp region � 5 for two

mutations and the 775-bp region � 7 for three muta-

tions. There was also sign of some accumulation of

these SNPs, such that, at least in some cases, higher

levels of phenotypic resistance were associated with the

presence of additional mutations (Table 1). Bacteria that

co-evolved with LUZ19 showed no such accumulation,

and deletions did not appear representative of position

in terms of resistance to LUZ19, with only one of the

most resistant isolates having a deletion in the pilF

gene.

Discussion

Our goal was to determine whether arms race and fluc-

tuating selection co-evolutionary systems produced

characteristic genotype-by-genotype interactions,

revealed by bipartite network structure and local adap-

tation. Contrary to expectation, we found that both the

ARD (14-1) and FSD (LUZ19) phages produced nested

bipartite networks and that only the ARD phage

showed a significant level of local adaptation. We also

identified mutated receptor genes on bacteria that

evolved with phage 14-1, but found no clear signal of

evolution in one of the putative receptor genes
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associated with infection by LUZ19. These results,

although not contradicting theoretical predictions, sug-

gest that the ecological and evolutionary processes con-

tributing to larger-scale patterns are complex. We

discuss our main findings below.

Nestedness and modularity

Weitz et al. (2013) suggested that underlying co-evolu-

tionary interactions could influence network structure.

A nested pattern indicates that one or a small number

of qualitatively similar resistance (host) and infectivity

(parasite) genotypes dominate the co-evolutionary pro-

cess and that less frequent types are either decreasing

towards extinction (lower relative fitness) or increasing

in frequency (higher relative fitness) to eventually dis-

place the most abundant types (e.g. Gomulkiewicz et al.

2000; Nuismer & Thompson 2006; Beckett & Williams

2013). We found that nested networks evolved repeat-

edly and consistently in independent replicate micro-

cosms. We had expected such nested networks for

phage 14-1, as it had shown a predominantly ARD pat-

tern in the experiment (Betts et al. 2014). However,

despite substantial differences in their co-evolutionary

dynamics (Betts et al. 2014), networks with both ARD

(phage 14-1) and FSD (phage LUZ19) phages showed

similar levels of high nestedness and nonmodularity.

These patterns are consistent with the majority of

reported phage–bacteria systems (Flores et al. 2011) and

were robust over evolutionary time during the

experiment.

In contrast to nested matrices, modular networks do

not necessarily have single-most infectious or resistant

types and could therefore be associated with sustained

frequency-dependent selection. Thus, we had expected

relatively more modular networks for the LUZ19 phage

type, reflecting their fluctuating selection co-evolution-

ary dynamics (Betts et al. 2014). However, our analyses

show that the majority of networks were not signifi-

cantly modular (Fig. 2). Previous study (Poisot et al.

2011b, 2013) suggests that our sampling of 12 host and

12 parasite genotypes should have been sufficient to

represent each network, including the potential detec-

tion of a signal of modularity. Given the findings from

field populations of fluorescent pseudomonas and infec-

tive lytic phages that networks are both nested and

modular (Poisot et al. 2013), we suggest that the lack of

modularity in our study was due to the source experi-

ments commencing with single bacterial and phage

clones, whereas field populations are diversified, proba-

bly containing many bacterial species and/or strains,

and phage families. It is currently unknown to what

extent the communities in the Poisot et al.’s (2013) study

may have previously co-evolved (as was observed dur-

ing the course of the experiment in our populations;

Betts et al. 2014), although other studies in seminatural

or natural environments are consistent with the occur-

rence of phage–bacteria co-evolution (Koskella & Brock-

hurst 2014).

Host range and Impact

Under pure ARD co-evolution, the accumulation of

infectivity alleles should lead to an ever-increasing host

range (and consequently, nested networks). However, it

is likely that this accumulation is not indefinite and

that, at some point, increasing host range bears fitness

costs. Importantly, such a cost of generalism may

Table 1 Mutations found in the sequenced wzy and pilF gene in bacteria co-evolved with the phage 14-1 and LUZ19, respectively

Strain network position and

replicate population ID

wzy Mutations in bacteria co-evolved

with 14-1 (& amino acid change)

pilF Mutations in bacteria co-evolved

with LUZ19

Least resistant 1 Frameshift 776 ΔG (multiple) Nil

Mean resistant 1 SNP 533 G-A (R-K) Sequence truncated 641-759

Most resistant 1 SNP 299 G-A (D-N) Nil

Least resistant 2 Nil Nil

Mean resistant 2 Frameshift 782 ΔT (multiple) Upstream deletion bp 1-87

Most resistant 2 Frameshift 782 ΔT (multiple) Upstream deletion bp 1-197

Least resistant 3 SNP 281 (S-Y) Nil

Mean resistant 3 SNP 281, 872 (S-Y, V-G) Upstream deletion bp 1-316

Most resistant 3 Frameshift 420 ΔT (multiple) Nil

Three representative isolates were picked from each of the three replicate populations at time point 9 (total of nine colonies from

each phage population). Their selection was based on their level of resistance (measured as the inverse of impact Mi,j) to their co-

evolved network phages. Comparisons with the ancestral strain of Pseudomonas aeruginosa PAO1 showed multiple nonsynonymous

SNPs and frameshift mutations in the wzy gene. These changes potentially impact on the structure of the LPS, the receptor for the

phage 14-1 and expression of the type IV pili. For pilF, we found large-scale deletions of the upstream region of the gene, truncation

within the gene or no change at all.

© 2017 John Wiley & Sons Ltd
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prevent the fixation of large-range variants in putative

gene-for-gene systems and produce FSD dynamics

(Sasaki 2000; Hall et al. 2011b). Examples can be found

in plant–pathogen systems, where so-called costs of vir-

ulence may lead to the selective elimination of unneces-

sary infectivity alleles and promote their frequency-

dependent cycling (Van der Plank 1968; Bahri et al.

2009). Such costs of infectivity alleles may explain our

finding of a nested network structure for LUZ19,

despite our previous observation of FSD coevolution

(Betts et al. 2014).

We investigated possible costs of generalism by quan-

tifying changes in host range and its relationship with

phage impact (i.e. the capacity to reduce host density as

measured by decreases in optical density). We found

that, unlike for modularity and nestedness, populations

showed more divergent trajectories for host range.

Thus, while the topography of links in the network

remained relatively constant through time, the total

number of links (i.e. host range) strongly increased in

some populations, consistent with ARD-like co-evolu-

tion and concomitant increases in infectivity range

(Poullain et al. 2008; Hall et al. 2011a; Betts et al. 2014).

Also consistent with ARD, we observed mostly strong

positive genetic correlations between host range and

phage impact within networks of the 14-1 phage. There-

fore, selection for increasing host range did not appear

to be constrained by a fitness cost with respect to the

capacity to reduce host density. This is in agreement

with similar relationships for field populations of fluor-

escent pseudomonads by Poisot et al. (2013). However,

for the FSD phage LUZ19 and contrary to our predic-

tion, we found no clear evidence for a cost of general-

ism. Only one of the three replicate populations

developed a trade-off between range and impact, com-

patible with costs and a FSD co-evolution scenario.

Molecular evolution

Consistent with molecular evolution in bacterial recep-

tors due to phage selection (Betts et al. 2016), we

detected mutations and frameshifts in the samples of

Pseudomonas aeruginosa exposed to phage 14-1 as well as

upstream deletions covering the start region of the gene

and sequence truncations in bacteria exposed to LUZ19.

Namely, we observed several mutations in the wzy

gene, including parallel evolution of similar SNPs,

which may have reduced the efficiency of phage

adsorption. Mutations in wzy can affect B-band LPS

biosynthesis in P. aeruginosa, altering LPS structure or

even leading to absent LPS structures on the bacterial

surface (Islam et al. 2010). Moreover, the gene wzy has

previously been highlighted as a focus of 14-1 imposed

selection, and SNPs in wzy can confer resistance to both

14-1 and other LPS-dependent phage (Betts et al. 2016).

Although there is indication of the same genetic signa-

ture associated with the least and intermediate vulnera-

ble bacterial clones in one of the 14-1 networks, we

were not able to statistically determine a signal of asso-

ciation with resistance phenotypes and sequenced geno-

types. Moreover, many other genes influence LPS,

meaning that the mutations identified here may only be

a subset of changes that actually occurred.

For bacteria co-evolving with phage LUZ19, analysis

of sequences of the pilF gene revealed limited evidence

of type IV pili evolution, contrasting with the findings

by Betts et al. (2016). These discrepancies, however,

may be explained by genes not sequenced in our study

(such as pilI and pilH), yet directly involved in the pro-

duction of type IV pili. We therefore urge caution in

interpreting these preliminary molecular findings.

Local adaptation

The classic view of host–parasite co-evolution is that

parasites have a higher evolutionary potential than their

hosts, due to their shorter generation time and larger

population sizes (Haldane 1949; Hamilton 1980). Faster

parasite adaptation than host counteradaptation is thus

expected to translate into a geographic pattern of locally

adapted parasites. Over the past two decades, a large

body of research has explored the various ecological

and evolutionary processes affecting patterns in local

(mal)adaptation of host and/or parasite, namely differ-

ential migration or habitat productivity (Gandon et al.

1996; Lively 1999; Gomulkiewicz et al. 2000; Hochberg

& Møller 2001; Gandon 2002; Gandon & Michalakis

2002; Morgan et al. 2005; Morgan & Buckling 2006;

Nuismer 2006; Nuismer & Gandon 2008; Gandon &

Nuismer 2009). In the limiting situation considered in

our experiment of isolated populations and controlled

environmental conditions, one of our two phages (14-1)

matched the classic prediction of local parasite adapta-

tion. Interestingly, under similar experimental protocols,

a related bacterium (P. fluorescens SBW25) often pro-

duces the opposite pattern of parasite maladaptation

(Buckling & Rainey 2002; Morgan et al. 2005; but see

Duncan et al. 2016). The mechanisms explaining these

contrasting findings remain to be elucidated.

Based on what little theory exists, we hypothesized

that the FSD phage LUZ19 should be more likely to

produce patterns of local adaptation than the ARD

phage 14-1. This prediction was not met, and moreover,

we found no corresponding scaling-up of network char-

acteristics. Namely, levels of modularity (which should

be associated with FSD dynamics) were uncorrelated

with levels of local adaptation. Clearly, these correlation

tests were based on relatively small number of

© 2017 John Wiley & Sons Ltd
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populations (n = 6), limiting statistical power. This

could also explain why we found no support for the

general prediction that increasing local host range

should be correlated with levels of local adaptation. We

suggest that more theoretical work is needed to clarify

the relationship between local network structure, co-

evolutionary dynamics and ensuing patterns of local

adaptation.

Our limited molecular data do not allow a formal

analysis of a link between patterns of molecular differ-

entiation and patterns of local adaptation. The available

data show different mutations in different populations,

contributing to putative bacterial resistance in the 14-1

confronted bacteria. Such among-population differentia-

tion is at least broadly consistent with the emergence of

local adaptation. In contrast, we found less indication of

pilF alteration in the LUZ19-co-evolved bacteria. This

preliminary result is consistent with our observations of

local adaptation. However, evolution can occur in the

same gene for LUZ19 adapted bacteria (Betts et al.

2016), and moreover, there are many other candidate

genes affecting type IV pili, which could explain the co-

evolutionary pattern and lack of local adaptation.

There are methodological differences between the

present study and that employed in Betts et al. (2014)

that could have influenced the results and conclusions.

First, the analyses in the present study are based on

randomly chosen bacterial clones from frozen samples

of Betts et al. (2014). Given that the phages in the pre-

sent study were isolated initially on the ancestral strain,

it is possible that they only partially reflect actual phage

community composition occurring at each time step in

the co-evolutionary study of Betts et al. (2014). More-

over, the infectivity assays in our study were based on

significant decreases in the OD of bacterial host popula-

tions, as opposed to infectivity assays of phage popula-

tions on bacterial clones in Betts et al. (2014). It is

therefore possible that positive infectivity from this pre-

vious study was not always associated with statistically

significant drops in OD in the present study, but this is

impossible to test, because different clones from the

same populations may have been sampled in the cur-

rent study.

Second, our local adaptation assays were performed

with the phage isolates that had been shown to infect

hosts in the sympatric network. Assuming that phage

clones existed at high frequency (i.e. among the high-

est 12 clones in the source populations) that did not

infect any of the 12 most frequent bacterial clones,

this could have increased the chances of detecting sig-

nificant signals of local adaptation. However, using a

full representative sample of phages (i.e. that infect

either local hosts or hosts in the other populations

tested) would have introduced another bias in the

measure, that is investigating phages that do not

infect the 12 chosen bacterial isolates, but either do or

do not infect others in the sympatric population.

Future work is needed to assess the importance of

these and other potential biases to our understanding

of local adaptation.

Conclusions

Despite previously described differences in the co-evo-

lutionary dynamics between the two phages investi-

gated here, we found the bipartite networks to show

similar, highly nested structures. The main properties

distinguishing these ARD and FSD phage–bacterial sys-
tems are that (i) the ARD phage is locally adapted to its

host and based on limited sequencing, (ii) the existence

of molecular changes to bacterial receptors after co-evo-

lution with the ARD phage showed SNPs, while co-evo-

lution with the FSD phage sometimes exhibited large-

scale truncations of the bacterial receptor. Our study

shows that considerable variation emerges between

replicates with the same initial bacterial and phage

types, indicating that probabilistic events (specific muta-

tions in specific genetic backgrounds) could play an

important role in larger-scale co-evolutionary patterns.
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